Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 317
Filter
1.
Braz. j. biol ; 83: e250550, 2023. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1345536

ABSTRACT

Abstract Vanillin is the major component which is responsible for flavor and aroma of vanilla extract and is produced by 3 ways: natural extraction from vanilla plant, chemical synthesis and from microbial transformation. Current research was aimed to study bacterial production of vanillin from native natural sources including sewage and soil from industrial areas. The main objective was vanillin bio-production by isolating bacteria from these native sources. Also to adapt methodologies to improve vanillin production by optimized fermentation media and growth conditions. 47 soil and 13 sewage samples were collected from different industrial regions of Lahore, Gujranwala, Faisalabad and Kasur. 67.7% bacterial isolates produced vanillin and 32.3% were non-producers. From these 279 producers, 4 bacterial isolates selected as significant producers were; A3, A4, A7 and A10. These isolates were identified by ribotyping as A3 Pseudomonas fluorescence (KF408302), A4 Enterococcus faecium (KT356807), A7 Alcaligenes faecalis (MW422815) and A10 Bacillus subtilis (KT962919). Vanillin producers were further tested for improved production of vanillin and were grown in different fermentation media under optimized growth conditions for enhanced production of vanillin. The fermentation media (FM) were; clove oil based, rice bran waste (residues oil) based, wheat bran based and modified isoeugenol based. In FM5, FM21, FM22, FM23, FM24, FM30, FM31, FM32, FM34, FM35, FM36, and FM37, the selected 4 bacterial strains produced significant amounts of vanillin. A10 B. subtilis produced maximum amount of vanillin. This strain produced 17.3 g/L vanillin in FM36. Cost of this fermentation medium 36 was 131.5 rupees/L. This fermentation medium was modified isoeugenol based medium with 1% of isoeugenol and 2.5 g/L soybean meal. ech gene was amplified in A3 P. fluorescence using ech specific primers. As vanillin use as flavor has increased tremendously, the bioproduction of vanillin must be focused.


Resumo A vanilina é o principal componente responsável pelo sabor e aroma do extrato de baunilha e é produzida de três formas: extração natural da planta da baunilha, síntese química e transformação microbiana. A pesquisa atual teve como objetivo estudar a produção bacteriana de vanilina a partir de fontes naturais nativas, incluindo esgoto e solo de áreas industriais. O objetivo principal era a bioprodução de vanilina por meio do isolamento de bactérias dessas fontes nativas. Também para adaptar metodologias para melhorar a produção de vanilina por meio de fermentação otimizada e condições de crescimento. Foram coletadas 47 amostras de solo e 13 de esgoto de diferentes regiões industriais de Lahore, Gujranwala, Faisalabad e Kasur; 67,7% dos isolados bacterianos produziram vanilina e 32,3% eram não produtores. Desses 279 produtores, 4 isolados bacterianos selecionados como produtores significativos foram: A3, A4, A7 e A10. Esses isolados foram identificados por ribotipagem como fluorescência A3 Pseudomonas (KF408302), A4 Enterococcus faecium (KT356807), A7 Alcaligenes faecalis (MW422815) e A10 Bacillus subtilis (KT962919). Os produtores de vanilina foram posteriormente testados para produção aprimorada de vanilina e foram cultivados em diferentes meios de fermentação sob condições de crescimento otimizadas para produção aprimorada de vanilina. Os meios de fermentação (FM) foram: à base de óleo de cravo, à base de resíduos de farelo de arroz (resíduos de óleo), à base de farelo de trigo e à base de isoeugenol modificado. Em FM5, FM21, FM22, FM23, FM24, FM30, FM31, FM32, FM34, FM35, FM36 e FM37, as 4 cepas bacterianas selecionadas produziram quantidades significativas de vanilina. A10 B. subtilis produziu quantidade máxima de vanilina. Essa cepa produziu 17,3 g / L de vanilina em FM36. O custo desse meio de fermentação 36 foi de 131,5 rúpias / L. Esse meio de fermentação foi um meio à base de isoeugenol modificado com 1% de isoeugenol e 2,5 g / L de farelo de soja. O gene ech foi amplificado em A3 P. fluorescence usando primers específicos para ech. Como o uso da vanilina como sabor aumentou tremendamente, a bioprodução da vanilina deve ser focada.


Subject(s)
Benzaldehydes/metabolism , Flavoring Agents/metabolism , Bacillus subtilis/metabolism , Industrial Microbiology , Pseudomonas fluorescens/metabolism , Enterococcus faecium/metabolism , Culture Media , Alcaligenes faecalis/metabolism , Fermentation
2.
Chinese Journal of Biotechnology ; (12): 993-1008, 2023.
Article in Chinese | WPRIM | ID: wpr-970418

ABSTRACT

The development of synthetic biology has greatly promoted the construction of microbial cell factories, providing an important strategy for green and efficient chemical production. However, the bottleneck of poor tolerance to harsh industrial environments has become the key factor hampering the productivity of microbial cells. Adaptive evolution is an important method to domesticate microorganisms for a certain period by applying targeted selection pressure to obtain desired phenotypic or physiological properties that are adapted to a specific environment. Recently, with the development of technologies such as microfluidics, biosensors, and omics analysis, adaptive evolution has laid the foundation for efficient productivity of microbial cell factories. Herein, we discuss the key technologies of adaptive evolution and their important applications in improvement of environmental tolerance and production efficiency of microbial cell factories. Moreover, we looked forward to the prospects of adaptive evolution to realize industrial production by microbial cell factories.


Subject(s)
Metabolic Engineering , Industrial Microbiology/methods , Synthetic Biology , Environment , Industry
3.
Chinese Journal of Biotechnology ; (12): 806-815, 2021.
Article in Chinese | WPRIM | ID: wpr-878597

ABSTRACT

Yeast are comprised of diverse single-cell fungal species including budding yeast Saccharomyces cerevisiae and various nonconventional yeasts. Budding yeast is well known as an important industrial microorganism, which has been widely applied in various fields, such as biopharmaceutical and health industry, food, light industry and biofuels production. In the recent years, various yeast strains from different ecological environments have been isolated and characterized. Novel species have been continuously identified, and strains with diverse physiological characteristics such as stress resistance and production of bioactive compounds were selected, which proved abundant biodiversity of natural yeast resources. Genome mining of yeast strains, as well as multi-omics analyses (transcriptome, proteome and metabolome, etc.) can reveal diverse genetic diversity for strain engineering. The genetic resources including genes encoding various enzymes and regulatory proteins, promoters, and other elements, can be employed for development of robust strains. In addition to exploration of yeast natural diversity, phenotypes that are more suitable for industrial applications can be obtained by generation of a variety of genetic diversity through mutagenesis, laboratory adaptation, metabolic engineering, and synthetic biology design. The optimized genetic elements can be used to efficiently improve strain performance. Exploration of yeast biodiversity and genetic diversity can be employed to build efficient cell factories and produce biological enzymes, vaccines, various natural products as well as other valuable products. In this review, progress on yeast diversity is summarized, and the future prospects on efficient development and utilization of yeast biodiversity are proposed. The methods and schemes described in this review also provide a reference for exploration of diversity of other industrial microorganisms and development of efficient strains.


Subject(s)
Biodiversity , Biofuels , Industrial Microbiology , Metabolic Engineering , Saccharomyces cerevisiae/genetics , Synthetic Biology
4.
Chinese Journal of Biotechnology ; (12): 801-805, 2021.
Article in Chinese | WPRIM | ID: wpr-878596

ABSTRACT

Industrial microorganisms and their products are widely used in various fields such as industry, agriculture, and medicine, which play a pivotal role in economy. Efficient industrial strains are the key to improve production efficiency, and advanced fermentation technology as well as instrument platform is also important to develop microbial metabolic potential. In recent years, rapid development has been achieved in research of industrial microorganisms. Artificial intelligence, efficient genome-editing and synthetic biology technologies have been increasingly applied, and related industrial applications are being accomplished. In order to promote utilization of industrial microorganisms in biological manufacturing, we organized this special issue on innovation and breakthrough of industrial microorganisms. Progress including microbial strain diversity and metabolism, strain development technology, fermentation process optimization and scale-up, high-throughput droplet culture system, and applications of industrial microorganisms is summarized in this special issue, and prospects on future studies are proposed.


Subject(s)
Artificial Intelligence , Fermentation , Industrial Microbiology , Industry , Metabolic Engineering , Synthetic Biology
5.
Chinese Journal of Biotechnology ; (12): 3242-3252, 2021.
Article in Chinese | WPRIM | ID: wpr-921421

ABSTRACT

L-asparaginase hydrolyzes L-asparagine to produce L-aspartic acid and ammonia. It is widely distributed in microorganisms, plants and serum of some rodents, and has important applications in the pharmaceutical and food industries. However, the poor thermal stability, low catalytic efficiency and low yield hampered the further application of L-asparaginase. In this paper, rational design and 5' untranslated region (5'UTR) design strategies were used to increase the specific enzyme activity and protein expression of L-asparaginase derived from Rhizomucor miehei (RmAsnase). The results showed that among the six mutants constructed through homology modeling combined with sequence alignment, the specific enzyme activity of the mutant A344E was 1.5 times higher than the wild type. Subsequently, a food-safe strain Bacillus subtilis 168/pMA5-A344E was constructed, and the UTR strategy was used for the construction of recombinant strain B. subtilis 168/pMA5 UTR-A344E. The enzyme activity of B. subtilis 168/pMA5 UTR-A344E was 7.2 times higher than that of B. subtilis 168/pMA5-A344E. The recombinant strain B. subtilis 168/pMA5 UTR-A344E was scaled up in 5 L fermenter, and the final yield of L-asparaginase was 489.1 U/mL, showing great potential for industrial application.


Subject(s)
Asparaginase/genetics , Bacillus subtilis/genetics , Industrial Microbiology , Protein Engineering , Rhizomucor/enzymology , Sequence Alignment
6.
Rev. argent. microbiol ; 52(4): 61-70, dic. 2020. graf
Article in English | LILACS | ID: biblio-1340921

ABSTRACT

Resumen La demanda de xilanasas fúngicas en los procesos biotecnológicos industriales muestra un claro aumento en todo el mundo, por lo que hay un interés en ajustar las condiciones de producción de xilanasas microbianas. En este estudio se optimizó la capacidad del hongo Fusarium solani para producir xilanasas extracelulares con escasa actividad celulolítica mediante el diseño de Box-Wilson. Se determinaron las mejores condiciones de cultivo para obtener una preparación enzimática cruda con una actividad xilanolítica significativa y poca actividad celulolítica. En la mayoría de los tratamientos, la actividad xilanolítica fue mayor que la actividad celulolítica. Se observó un efecto negativo sobre la producción de endoxilanasas, p-xilosidasasy endocelulasascon el aumento de la concentración dexilano. El aumento del tiempo de incubación afectó adversamente la producción de endocelulasas y p-xilosidasas. De acuerdo con el modelo matemático y las pruebas experimentales, es posible producir endoxilanasas con una actividad endocelulasa mínima aumentando el tiempo de incubación y la concentración de sulfato de amonio. Las condiciones de cultivo óptimas para producir una mayor cantidad de endoxilanasas (10,65 U/mg) y mínima cantidad de endocelulasas fueron 2,5% (p/v) de xilano y 5, 2 y 0,4 g/l de extracto de levadura, sulfato de amonio y urea, respectivamente, con 120 h de incubación.


Resumen La demanda de xilanasas fúngicas en los procesos biotecnológicos industriales muestra un claro aumento en todo el mundo, por lo que hay un interés en ajustar las condicionesde producción de xilanasas microbianas. En este estudio se optimizó la capacidad del hongo Fusarium solani para producir xilanasas extracelulares con escasa actividad celulolítica medi-ante el dise˜no de Box-Wilson. Se determinaron las mejores condiciones de cultivo para obteneruna preparación enzimática cruda con una actividad xilanolítica significativa y poca actividad celulolítica. En la mayoría de los tratamientos, la actividad xilanolítica fue mayor que laactividad celulolítica. Se observó un efecto negativo sobre la producción de endoxilanasas, xylanolytic activity and little cellulolytic activity. In most treatments, the xylanolytic activity was higher than the cellulolytic activity. A negative effect on the production of endoxylanases, p-xylosidases and endocellulases was observed with the increasing of xylan concentration. Increasing the incubation time adversely affected the production of endocellulases and p-xylosidases. According to the mathematical model and experimental tests, it is possible to produce endoxylanases with minimal endocellulase activity increasing incubation time and the concentration of ammonium sulfate. The optimal culture conditions to produce a greater amount of endoxylanases (10.65 U/mg) and low endocellulases from F. solani were: 2.5% (w/v) xylan, 5.0, 2.0 and 0.4g/l, of yeast extract, ammonium sulfate and urea, respectively, with 120 h of incubation.


Subject(s)
Cellulases , Endo-1,4-beta Xylanases/biosynthesis , Fermentation , Research Design , Industrial Microbiology , Fusarium , Hydrogen-Ion Concentration
7.
Chinese Journal of Biotechnology ; (12): 2193-2205, 2020.
Article in Chinese | WPRIM | ID: wpr-878478

ABSTRACT

Endoglucanase (EG) is an important component of cellulases and play an important role in cellulose degradation. However, its application is limited due to the low yield of endoglucanase from natural microorganisms. Efficient heterologous expression of endoglucanase is an effective way to solve this problem. To obtain the engineered Saccharomyces cerevisiae for high-yield endoglucanase, endoglucanase gene was cloned from Clostridium cellulovorans, with a total length of 1 996 bp, encoding 440 amino acids, and the complete expression cassette (PαEGC) was constructed with the PGK promoter sequence from Saccharomyces cerevisiae, α-signal peptide sequence from pPIC9K plasmid and CYC1 terminator sequence from pSH65 plasmid by gene splicing by overlap extension PCR (SOE PCR), and the expression vector of endoglucanase in Saccharomyces cerevisiae was constructed by rDNA integration. The relationship between copy number and protein expression was explored. Random multicopy expression of endoglucanase was performed in Saccharomyces cerevisiae. The copy number of endoglucanase was identified by Droplet Digital PCR and explore the relationship between copy number and protein expression.The engineered Saccharomyces cerevisiae of endoglucanase with copy numbers of 1, 3, 4, 7, 9, 11, 15, 16, 19, 21, 22 and 23 were obtained by rDNA integration, respectively. The results showed that when the copy number was 15, the enzyme activity was the highest, namely 351 U/mL. The engineered strain of Saccharomyces cerevisiae for endoglucanase was successfully constructed, which can provide reference for the heterologous expression of other industrial enzymes.


Subject(s)
Cellulase/genetics , Genetic Engineering , Industrial Microbiology , Plasmids/genetics , Saccharomyces cerevisiae/genetics
8.
Chinese Journal of Biotechnology ; (12): 2104-2112, 2020.
Article in Chinese | WPRIM | ID: wpr-878470

ABSTRACT

Shikimic acid is an intermediate metabolite in the synthesis of aromatic amino acids in Escherichia coli and a synthetic precursor of Tamiflu. The biosynthesis of shikimic acid requires blocking the downstream shikimic acid consuming pathway that leads to inefficient production and cell growth inhibition. In this study, a dynamic molecular switch was constructed by using growth phase-dependent promoters and degrons. This dynamic molecular switch was used to uncouple cell growth from shikimic acid synthesis, resulting in the production of 14.33 g/L shikimic acid after 72 h fermentation. These results show that the dynamic molecular switch could redirect the carbon flux by regulating the abundance of target enzymes, for better production.


Subject(s)
Escherichia coli/genetics , Escherichia coli Proteins/genetics , Industrial Microbiology/methods , Metabolic Engineering , Shikimic Acid/metabolism
9.
Chinese Journal of Biotechnology ; (12): 820-828, 2020.
Article in Chinese | WPRIM | ID: wpr-826894

ABSTRACT

Corynebacterium glutamicum, an important microorganism to produce amino acids and organic acids, has been widely applied in food and medicine fields. Therefore, using editing tools to study the function of unknown genes in C. glutamicum has great significance for systematic development of industrial strain with efficient and novel production capability. Recently, gene editing has been greatly developed. Traditional gene editing based on homologous recombination and gene editing mediated by nuclease are successfully applied in C. glutamicum. Among these, the CRISPR system has been developed to be a main tool used for gene knockout of C. glutamicum due to its advantages of efficiency, simplicity and good target specificity. However, more efficient and reliable knockout system is still urgently demanded, to help develop high-performing strains in industrial application.


Subject(s)
CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Corynebacterium glutamicum , Genetics , Gene Editing , Glutamic Acid , Industrial Microbiology
10.
Chinese Journal of Biotechnology ; (12): 920-931, 2020.
Article in Chinese | WPRIM | ID: wpr-826884

ABSTRACT

The capacity for thermal tolerance is critical for industrial enzyme. In the past decade, great efforts have been made to endow wild-type enzymes with higher catalytic activity or thermostability using gene engineering and protein engineering strategies. In this study, a recently developed SpyTag/SpyCatcher system, mediated by isopeptide bond-ligation, was used to modify a rumen microbiota-derived xylanase XYN11-6 as cyclized and stable enzyme C-XYN11-6. After incubation at 60, 70 or 80 ℃ for 10 min, the residual activities of C-XYN11-6 were 81.53%, 73.98% or 64.41%, which were 1.48, 2.92 or 3.98-fold of linear enzyme L-XYN11-6, respectively. After exposure to 60-90°C for 10 min, the C-XYN11-6 remained as soluble in suspension, while L-XYN11-6 showed severely aggregation. Intrinsic and 8-anilino-1-naphthalenesulfonic acid (ANS)-binding fluorescence analysis revealed that C-XYN11-6 was more capable of maintaining its conformation during heat challenge, compared with L-XYN11-6. Interestingly, molecular cyclization also conferred C-XYN11-6 with improved resilience to 0.1-50 mmol/L Ca²⁺ or 0.1 mmol/L Cu²⁺ treatment. In summary, we generated a thermal- and ion-stable cyclized enzyme using SpyTag/SpyCatcher system, which will be of particular interest in engineering of enzymes for industrial application.


Subject(s)
Animals , Cyclization , Endo-1,4-beta Xylanases , Chemistry , Metabolism , Enzyme Stability , Industrial Microbiology , Methods , Microbiota , Protein Engineering , Rumen , Microbiology , Temperature
11.
Chinese Journal of Biotechnology ; (12): 1002-1011, 2020.
Article in Chinese | WPRIM | ID: wpr-826876

ABSTRACT

Uridine-cytidine kinase, an important catalyst in the compensation pathway of nucleotide metabolism, can catalyze the phosphorylation reaction of cytidine to 5'-cytidine monophosphate (CMP), but the reaction needs NTP as the phosphate donor. To increase the production efficiency of CMP, uridine-cytidine kinase gene from Thermus thermophilus HB8 and polyphosphate kinase gene from Rhodobacter sphaeroides were cloned and expressed in Escherichia coli BL21(DE3). Uridine-cytidine kinase was used for the generation of CMP from cytidine and ATP, and polyphosphate kinase was used for the regeneration of ATP. Then, the D403 metal chelate resin was used to adsorb Ni²⁺ to form an immobilized carrier, and the immobilized carrier was specifically combined with the recombinant enzymes to form the immobilized enzymes. Finally, single-factor optimization experiment was carried out to determine the reaction conditions of the immobilized enzyme. At 30 °C and pH 8.0, 60 mmol/L cytidine and 0.5 mmol/L ATP were used as substrates to achieve 5 batches of high-efficiency continuous catalytic reaction, and the average molar yield of CMP reached 91.2%. The above method has the advantages of low reaction cost, high product yield and high enzyme utilization rate, and has good applied value for industrial production.


Subject(s)
Cytidine Monophosphate , Metabolism , Escherichia coli , Genetics , Industrial Microbiology , Methods , Phosphotransferases (Phosphate Group Acceptor) , Metabolism , Uridine Kinase
12.
Chinese Journal of Biotechnology ; (12): 1031-1040, 2020.
Article in Chinese | WPRIM | ID: wpr-826873

ABSTRACT

The use of microbial cell factories to achieve efficient conversion of raw materials and synthesis of target substances is one of the important research directions of synthetic biology. Traditional industrial microorganisms have mainly used sugar-based raw materials as fermentation substrates. How to adopt cheaper carbon resources and realize their efficient use has been widely concerned. Formic acid is an important organic one-carbon source and widely used in industrial manufacturing of pesticides, leather, dyes, medicine and rubber. In recent years, due to the demand fluctuation in downstream industries, formic acid production is facing the dilemma of overcapacity, and therefore, requiring new conversion paths for expansion and extension of the related industrial chain. Biological route is one of the important options. However, natural formate-utilizing microorganisms generally grow slowly when metabolizing formic acid, and moreover, are difficult to be artificially modified by the absence of effective genetic tools. Construction of non-natural formate-utilizing microorganisms is another alternative strategy, but still in its infancy and has a huge space for further improvements. Here, we briefly summarize the recent research progress of biological utilization of formic acid, and also propose the future research focus and direction.


Subject(s)
Fermentation , Formates , Metabolism , Industrial Microbiology , Synthetic Biology
13.
Chinese Journal of Biotechnology ; (12): 1083-1100, 2020.
Article in Chinese | WPRIM | ID: wpr-826868

ABSTRACT

Chlorinated hydrocarbons (CAHs) threaten human health and the ecological environment due to their strong carcinogenic, teratogenic, mutagenic and heritable properties. Heterotrophic assimilation degradation can completely and effectively degrade CAHs, without secondary pollution. However, it is crucial to comprehensively understand the heterotrophic assimilation process of CAHs for its application. Therefore, we review here the characteristics and advantages of heterotrophic assimilation degradation of CAHs. Moreover, we systematically summarize current research status of heterotrophic assimilation of CAHs. Furthermore, we analyze bacterial genera and metabolism, key enzymes and characteristic genes involved in the metabolic process. Finally, we indicate existing problems of heterotrophic assimilation research and future research needs.


Subject(s)
Bacteria , Metabolism , Biodegradation, Environmental , Hydrocarbons, Chlorinated , Metabolism , Industrial Microbiology
14.
Chinese Journal of Biotechnology ; (12): 1101-1112, 2020.
Article in Chinese | WPRIM | ID: wpr-826867

ABSTRACT

As an important platform compound, 3-hydroxypropionic acid (3-HP) can be used as a substrate to synthesize a variety of biological products with commercial potential. The titer of 3-HP by wild-type bacteria is low, which severely limits the large-scale application and production of 3-HP. By modifying the genes related to the metabolic pathway, engineered bacteria using cheap substrates as carbon sources are constructed, the aim of reducing production cost and increasing output is realized. In this paper, the recent progress in the synthesis of 3-HP by metabolic engineering at home and abroad is reviewed. The advantages and disadvantages of glycerol pathway, malonyl-CoA pathway and beta-alanine pathway for synthesis of 3-HP are also summarized and analyzed, and the future development of 3-HP is prospected.


Subject(s)
Glycerol , Metabolism , Industrial Microbiology , Lactic Acid , Metabolic Engineering , Metabolic Networks and Pathways , Genetics
15.
Chinese Journal of Biotechnology ; (12): 1126-1137, 2020.
Article in Chinese | WPRIM | ID: wpr-826865

ABSTRACT

Bacitracin is a broad-spectrum cyclic peptide antibiotic, and mainly produced by Bacillus. Energy metabolism plays as a critical role in high-level production of target metabolites. In this study, Bacillus licheniformis DW2, an industrial strain for bacitracin production, was served as the original strain. First, our results confirmed that elimination of cytochrome bd oxidase branch via deleting gene cydB benefited bacitracin synthesis. Bacitracin titer and ATP content were increased by 10.97% and 22.96%, compared with those of original strain, respectively. Then, strengthening cytochrome aa3 oxidase branch via overexpressing gene qoxA was conducive to bacitracin production. Bacitracin titer and ATP content were increased by 18.97% and 34.00%, respectively. In addition, strengthening ADP synthesis supply is also proven as an effective strategy to promote intracellular ATP accumulation, overexpression of adenosine kinase DcK and adenylate kinase AdK could all improve bacitracin titers, among which, dck overexpression strain showed the better performance, and bacitracin titer was increased by 16.78%. Based on the above individual methods, a method of combining the deletion of gene cydB and overexpression of genes qoxA, dck were used to enhance ATP content of cells to 39.54 nmol/L, increased by 49.32% compared to original strain, and bacitracin titer produced by the final strain DW2-CQD (DW2ΔcydB::qoxA::dck) was 954.25 U/mL, increased by 21.66%. The bacitracin titer produced per cell was 2.11 U/CFU, increased by 11.05%. Collectively, this study demonstrates that improving ATP content was an efficient strategy to improve bacitracin production, and a promising strain B. licheniformis DW2-CQD was attained for industrial production of bacitracin.


Subject(s)
Bacillus licheniformis , Metabolism , Bacitracin , Energy Metabolism , Genetics , Industrial Microbiology , Methods
16.
Chinese Journal of Biotechnology ; (12): 1138-1149, 2020.
Article in Chinese | WPRIM | ID: wpr-826864

ABSTRACT

Pyrroloquinoline quinone (PQQ), an important redox enzyme cofactor, has many physiological and biochemical functions, and is widely used in food, medicine, health and agriculture industry. In this study, PQQ production by recombinant Gluconobacter oxydans was investigated. First, to reduce the by-product of acetic acid, the recombinant strain G. oxydans T1 was constructed, in which the pyruvate decarboxylase (GOX1081) was knocked out. Then the pqqABCDE gene cluster and tldD gene were fused under the control of endogenous constitutive promoter P0169, to generate the recombinant strain G. oxydans T2. Finally, the medium composition and fermentation conditions were optimized. The biomass of G. oxydans T1 and G. oxydans T2 were increased by 43.02% and 38.76% respectively, and the PQQ production was 4.82 and 20.5 times higher than that of the wild strain, respectively. Furthermore, the carbon sources and culture conditions of G. oxydans T2 were optimized, resulting in a final PQQ yield of (51.32±0.899 7 mg/L), 345.6 times higher than that of the wild strain. In all, the biomass of G. oxydans and the yield of PQQ can be effectively increased by genetic engineering.


Subject(s)
Fermentation , Gene Knockout Techniques , Gluconobacter oxydans , Genetics , Metabolism , Industrial Microbiology , Methods , Multigene Family , Genetics , Organisms, Genetically Modified , PQQ Cofactor , Genetics , Promoter Regions, Genetic , Genetics
17.
Chinese Journal of Biotechnology ; (12): 1209-1215, 2020.
Article in Chinese | WPRIM | ID: wpr-826857

ABSTRACT

Bioreactors have been central in monoclonal antibodies and vaccines manufacturing by mammalian cells in suspension culture. Numerical simulation of five impeller combinations in a stirred bioreactor was conducted, and characteristics of velocity vectors, distributions of gas hold-up, distributions of shear rate in the bioreactor using 5 impeller combinations were numerically elucidated. In addition, genetically engineered CHO cells were cultivated in bioreactor installed with 5 different impeller combinations in fed-batch culture mode. The cell growth and antibody level were directly related to the maximum shear rate in the bioreactor, and the highest viable cell density and the peak antibody level were achieved in FBMI3 impeller combination, indicating that CHO cells are sensitive to shear force produced by impeller movement when cells were cultivated in bioreactor at large scale, and the maximum shear rate would play key roles in scaling-up of bioreactor at industrial scale.


Subject(s)
Animals , Cricetinae , Batch Cell Culture Techniques , Bioreactors , Reference Standards , CHO Cells , Cell Count , Computer Simulation , Cricetulus , Industrial Microbiology , Methods
18.
Chinese Journal of Biotechnology ; (12): 1334-1345, 2020.
Article in Chinese | WPRIM | ID: wpr-826843

ABSTRACT

Lycopene, as a high value-added terpene compound, has been widely concerned by researchers at home and abroad. Firstly, the ability of lycopene synthesis of Saccharomyces cerevisiae model strains S288c and YPH499 was analyzed and compared. The results showed that YPH499 was more suitable for lycopene synthesis as yeast chassis. Subsequently, the effects of constitutive promoters GPDpr, TEF1pr and inducible promoters GAL1pr, GAL10pr on Lycopene synthesis were compared. The results showed that when GPDpr and TEF1pr were used as promoters of crtE, crtB and crtI in lycopene synthesis pathway, the production of lycopene was 15.31 mg/L after 60 h fermentation in shaking flask. When GAL1pr and GAL10pr were used as promoters, the production was 123.89 mg/L, which was 8.09 times higher. In addition, the methylvaleric acid (MVA) pathway was further modified to overexpress the key enzyme gene of N-terminal truncation, tHMG1 (3-hydroxy-3-methylglutaryl coenzyme A reductase). The lycopene production was 265.68 mg/L, and the yield per cell was 72.79 mg/g. The Saccharomyces cerevisiae strain designed and constructed in this study can express lycopene in high yield per cell, thus could be used in the industrial production of lycopene after further construction and optimization.


Subject(s)
Biosynthetic Pathways , Genetics , Fermentation , Industrial Microbiology , Lycopene , Metabolism , Saccharomyces cerevisiae , Genetics , Metabolism , Species Specificity
19.
Chinese Journal of Biotechnology ; (12): 1801-1805, 2019.
Article in Chinese | WPRIM | ID: wpr-771752

ABSTRACT

Industrial biotechnology promises to make a significant contribution in enabling the sustainable development, and need the solid support from its basic discipline. As the basis of industrial biotechnology, industrial biology is to study the basic laws and mechanisms of biological behavior in industrial environment and to solve the key scientific problems for understanding, designing and constructing the organisms adapted to the application of industrial environment. In order to comprehend the status of industrial biology, we published this special issue to review the progress and trends of industrial biology from the three aspects of industrial protein science, cell science and fermentation science, respectively, for laying the foundation for the development of industrial biotechnology.


Subject(s)
Biotechnology , Fermentation , Industrial Microbiology
20.
Chinese Journal of Biotechnology ; (12): 1901-1913, 2019.
Article in Chinese | WPRIM | ID: wpr-771744

ABSTRACT

To quickly and efficiently understand the intracellular metabolic characteristics of industrial microorganisms, and to find potential metabolic engineering targets, genome-scale metabolic network models (GSMMs) as a systems biology tool, are attracting more and more attention. We review here the 20-year history of metabolic network model, analyze the research status and development of GSMMs, summarize the methods for model construction and analysis, and emphasize the applications of metabolic network model for analyzing intracellular metabolic activity of microorganisms from cellular phenotypes, and metabolic engineering. Furthermore, we indicate future development trend of metabolic network model.


Subject(s)
Industrial Microbiology , Metabolic Engineering , Metabolic Networks and Pathways , Genetics , Models, Biological , Systems Biology
SELECTION OF CITATIONS
SEARCH DETAIL